A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for the Poisson Problem

نویسنده

  • Zhao Ning
چکیده

We present a parallel Preconditioned BiConjugate Gradient Stabilized(BICGstab) solver for the Poisson problem. Given a real, nosymmetric and positive definite coefficient matrix , the parallized Preconditioned BICGstab -solver is able to find a solution for that system by exploiting the massive compute power of todays GPUs.Comparing sequential CPU implementations and that algorithm.we achieve a speed up from 8 to 10 depending on the dimension of the coefficient matrix. Additionally the concept of preconditioners to decrease the time to find a solution is evaluated using the AINV method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for the Poisson Problem

We present a parallel Preconditioned BiConjugate Gradient Stabilized(BICGstab) solver for the Poisson problem. Given a real, nosymmetric and positive definite coefficient matrix , the parallized Preconditioned BICGstab -solver is able to find a solution for that system by exploiting the massive compute power of todays GPUs.Comparing sequential CPU implementations and that algorithm.we achieve a...

متن کامل

Improvements of a Fast Parallel Poisson Solver on Irregular Domains

We discuss the scalable parallel solution of the Poisson equation on irregularly shaped domains discretized by finite differences. The symmetric positive definite system is solved by the preconditioned conjugate gradient algorithm with smoothed aggregation (SA) based algebraic multigrid (AMG) preconditioning. We investigate variants of the implementation of SA-AMG that lead to considerable impr...

متن کامل

A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations

We discuss the scalable parallel solution of the Poisson equation within a Particle-In-Cell (PIC) code for the simulation of electron beams in particle accelerators of irregular shape. The problem is discretized by Finite Differences. Depending on the treatment of the Dirichlet boundary the resulting system of equations is symmetric or ‘mildly’ nonsymmetric positive definite. In all cases, the ...

متن کامل

A 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem

We describe a novel 3D finite difference method for solving the anisotropic inhomogeneous Poisson equation based on a multi-component additive implicit method with a 13-point stencil. The serial performance is found to be comparable to the most efficient solvers from the family of preconditioned conjugate gradient (PCG) algorithms. The proposed multicomponent additive algorithm is unconditional...

متن کامل

Convergence acceleration method of large-scale parallel iterative solvers for heterogeneous properties

In large-scale scienti c computing, linear sparse solver is one of the most time-consuming process. In GeoFEM, various types of preconditioned iterative method is implemented on massively parallel computers. It has been well-known that ILU(0) factorization is very e ective preconditioning method for iterative solver. But it's also well-known that this method requires global data dependency and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014